ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 993]
В выпуклом четырехугольнике ABCD диагонали AC и BD равны соответственно a и b. Точки E, F, G и H являются соответственно серединами сторон AB, BC, CD и DA. Площадь четырёхугольника EFGH равна S. Найдите диагонали EG и HF четырёхугольника EFGH.
Пусть EFGH — выпуклый четырехугольник, а K, L, M, N — середины отрезков соответственно EF, FG, GH, HE; O — точка пересечения отрезков KM и LN. Известно, что LOM = 90o, KM = 3LN, а площадь четырёхугольника KLMN равна S. Найдите диагонали четырёхугольника EFGH.
В выпуклом четырёхугольнике KLMN точки E, F, G, H являются соответственно серединами сторон KL, LM, MN, NK. Площадь четырёхугольника EFGH равна Q, HEF = 30o, EFH = 90o. Найдите диагонали четырёхугольника KLMN.
Радиус окружности, вписанной в ромб, равен r, а острый угол ромба равен . Найдите сторону ромба.
Докажите, что сумма квадратов расстояний от произвольной точки плоскости до двух противоположных вершин прямоугольника равна сумме квадратов расстояний от этой точки до двух других вершин прямоугольника.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 993] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|