Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 499]
Биссектрисы
AD и
CE треугольника
ABC пересекаются
в точке
F . Известно, что точки
B ,
D ,
E и
F
лежат на одной окружности. Докажите, что радиус этой
окружности не меньше радиуса вписанной в этот треугольник
окружности.
Прямые, касающиеся окружности Ω в точках A и B, пересекаются в точке O. Точка I – центр Ω. На меньшей дуге AB окружности Ω выбрана точка C, отличная от середины дуги. Прямые AC и OB пересекаются в точке D, а прямые BC и OA – в точке E. Докажите, что центры описанных
окружностей треугольников ACE, BCD и OCI лежат на одной прямой.
Диагонали вписанного четырёхугольника
ABCD
пересекаются в точке
O . Докажите, что
+
+
+
+
+
+
.
[Неравенство Птолемея]
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан четырёхугольник ABCD. Докажите, что AC·BD ≤ AB·CD + BC·AD.
|
|
Сложность: 4+ Классы: 9,10,11
|
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
Страница:
<< 77 78 79 80
81 82 83 >> [Всего задач: 499]