Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 172]
В прямоугольном треугольнике ABC высота, опущенная на
гипотенузу AB, равна a, а биссектриса прямого угла равна b.
Найдите площадь треугольника ABC.
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырехугольник $ABCD$ описан вокруг окружности радиуса $R$. Пусть $h_1$ и $h_2$ – высоты опущенные из точки $A$ на стороны $BC$ и $CD$ соответственно. Аналогично $h_3$ и $h_4$ – высоты опущенные из точки $C$ на стороны $AB$ и $AD$. Докажите, что
$$
\frac{h_1+h_2-2R}{h_1h_2}=\frac{h_3+h_4-2R}{h_3h_4}.
$$
В трапеции ABCD известны основания AD = 24 и BC = 8 и
диагонали AC = 13,
BD = 5
. Найдите площадь трапеции.
|
|
Сложность: 4- Классы: 9,10,11
|
Точка
D на стороне
BC треугольника
ABC такова,
что радиусы вписанных окружностей треугольников
ABD и
ACD равны.
Докажите, что радиусы окружностей, вневписанных в треугольники
ABD и
ACD , касающихся
соответственно отрезков
BD и
CD , также равны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Точка $M$ лежит внутри выпуклого четырёхугольника $ABCD$ на одинаковом расстоянии от прямых $AB$ и $CD$ и на одинаковом расстоянии от прямых $BC$ и $AD$.
Оказалось, что площадь четырёхугольника $ABCD$ равна $MA\cdot MC + MB\cdot MD$. Докажите, что четырёхугольник $ABCD$
а) вписанный;
б) описанный.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 172]