Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 172]
|
|
Сложность: 4- Классы: 8,9,10,11
|
В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.
а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно.
б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно.
|
|
Сложность: 4- Классы: 9,10
|
Дан выпуклый четырёхугольник без параллельных сторон. Для каждой тройки его вершин строится точка, дополняющая эту тройку до параллелограмма, одна из диагоналей которого совпадает с диагональю четырёхугольника. Доказать, что из
четырёх построенных точек ровно одна лежит внутри исходного четырёхугольника.
Треугольник можно разрезать на три равных треугольника. Докажите, что один из его углов равен 60°.
|
|
Сложность: 4- Классы: 9,10
|
При каком наименьшем n существует выпуклый n-угольник, у которого синусы всех углов равны, а длины всех сторон различны?
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 172]