Страница:
<< 29 30 31 32 33 34
35 >> [Всего задач: 172]
В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что AB = CD.
Найдите высоту трапеции, у которой основания равны a и b
(a < b), угол между диагоналями равен
90o, а угол
между продолжениями боковых сторон равен
45o.
В выпуклом четырёхугольнике ABCD на сторонах AB и BC нашлись такие точки K и L соответственно, что ∠ADK = ∠CDL. Отрезки AL и CK пересекаются в точке P. Докажите, что ∠ADP = ∠BDC.
|
|
Сложность: 5- Классы: 9,10,11
|
Контуры выпуклых многоугольников F и G не имеют общих точек, причём G расположен внутри F. Хорду многоугольника F – отрезок, соединяющий две точки контура F, назовём опорной для G, если она пересекается с G только по точкам контура: содержит либо только вершину, либо сторону G.
а) Докажите, что найдётся опорная хорда, середина которой принадлежит контуру G.
б) Докажите, что найдутся две такие хорды.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть A0 – середина стороны BC треугольника ABC, а A' – точка касания с этой стороной вписанной окружности. Построим окружность Ω с центром в A0 и проходящую через A'. На других сторонах построим аналогичные окружности. Докажите, что если Ω касается описанной окружности на дуге BC, не содержащей A, то еще одна из построенных окружностей касается описанной окружности.
Страница:
<< 29 30 31 32 33 34
35 >> [Всего задач: 172]