Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 101]
|
|
Сложность: 5- Классы: 8,9,10
|
Дан треугольник
A0
B0
C0
. На отрезке
A0
B0
отмечены точки
A1
,
A2
, ,An , а на отрезке
B0
C0
– точки
C1
,
C2
, , Cn , причём
все отрезки
AiCi+1
(
i=0
,1
, n-1
), параллельны
между собой и все отрезки
CiAi+1
(
i=0
,1
, n-1
)
– тоже. Отрезки
C0
A1
,
A1
C2
,
A2
C1
и
C1
A0
ограничивают некоторый параллелограмм, отрезки
C1
A2
,
A2
C3
,
A3
C2
и
C2
A1
–
тоже и т.д. Докажите, что сумма площадей всех
n-1
получившихся
параллелограммов меньше половины площади треугольника
A0
B0
C0
.
Стороны
AB и
CD параллелограмма
ABCD площади 1
разбиты на
n равных частей,
AD и
BC — на
m равных частей.
а) Точки деления соединены так, как показано на рис.,
а.
б) Точки деления соединены так, как показано на рис.,
б.
Чему равны площади образовавшихся при этом маленьких параллелограммов?
а) Четыре вершины правильного двенадцатиугольника
расположены в серединах сторон квадрата (рис.). Докажите, что
площадь заштрихованной части в 12 раз меньше площади двенадцатиугольника.
б) Докажите, что площадь двенадцатиугольника, вписанного в окружность
радиуса 1, равна 3.
|
|
Сложность: 5 Классы: 8,9,10
|
На высотах (но не на их продолжениях) остроугольного
треугольника
ABC взяты точки
A1
,
B1
,
C1
,
отличные от точки пересечения высот
H , причём сумма
площадей треугольников
ABC1
,
BCA1
,
CAB1
равна
площади треугольника
ABC . Докажите, что окружность,
описанная около треугольника
A1
B1
C1
, проходит
через точку
H .
|
|
Сложность: 2+ Классы: 9,10,11
|
В трапеции ABCD (AD || BC) из точки Е – середины CD провели перпендикуляр EF к прямой AB. Найдите площадь трапеции, если АВ = 5, EF = 4.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 101]