Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 1547]
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.
На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой ∠MAD = ∠AMO, где O – точка пересечения диагоналей параллелограмма. Докажите, что MD = MC.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан треугольник ABC. Точка A1 симметрична вершине A относительно прямой BC, а точка C1 симметрична вершине C относительно прямой AB.
Докажите, что если точки A1, B и C1 лежат на одной прямой и C1B = 2A1B, то угол CA1B – прямой.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан отрезок AB и прямая MN, пересекающая его. Построить треугольник ABC так, чтобы прямая MN делила его угол пополам.
|
|
Сложность: 3+ Классы: 7,8,9
|
Серёжа вырезал из картона две одинаковые фигуры. Он положил их с нахлёстом
на дно прямоугольного ящика. Дно оказалось полностью покрыто. В центр дна вбили
гвоздь. Мог ли гвоздь проткнуть одну картонку и не проткнуть другую?
Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 1547]