ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1547]      



Задача 54607

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетия помогает решить задачу ]
[ Подобные треугольники и гомотетия (построения) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки впишите квадрат в данный треугольник так, чтобы одна из сторон квадрата лежала на основании треугольника, а противоположные этой стороне вершины — на боковых сторонах.

Прислать комментарий     Решение


Задача 55564

Темы:   [ Симметрия помогает решить задачу ]
[ Симметрия и построения ]
Сложность: 3+
Классы: 8,9

Точки A и B лежат по разные стороны от прямой l. С помощью циркуля и линейки постройте на этой прямой точку M так, чтобы прямая l делила угол AMB пополам.

Прислать комментарий     Решение


Задача 55653

Темы:   [ Композиции симметрий ]
[ Поворот (прочее) ]
Сложность: 3+
Классы: 8,9

На плоскости дан угол, равный $ \alpha$, с вершиной в точке O. Докажите, что композиция симметрий относительно сторон угла является поворотом вокруг точки O на угол 2$ \alpha$.

Прислать комментарий     Решение


Задача 55692

Темы:   [ Параллельный перенос. Построения и геометрические места точек ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте отрезок, равный и параллельный данному, так, чтобы его концы лежали на данной прямой и на данной окружности.

Прислать комментарий     Решение


Задача 55707

Темы:   [ Центральная симметрия ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3+
Классы: 8,9

Докажите, что при центральной симметрии каждый луч переходит в противоположно направленный с ним луч.

Прислать комментарий     Решение


Страница: << 125 126 127 128 129 130 131 >> [Всего задач: 1547]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .