ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 1026]
Даны непересекающиеся хорды AB и CD некоторой окружности. С помощью циркуля и линейки постройте на этой окружности такую точку X, чтобы хорды AX и BX высекали на хорде CD отрезок EF, имеющий данную длину a.
Даны прямая l и точки A и B по одну сторону от нее. Пусть A1 и B1 — проекции этих точек на прямую l. С помощью циркуля и линейки постройте на прямой l такую точку M, чтобы угол AMA1 был вдвое меньше угла BMB1.
На плоскости даны прямые l1, l2, ..., l2n, пересекающиеся в одной точке. Блоха сидит в некоторой точке M плоскости и прыгает через прямую l1, попадая в точку M1, причём M и M1 симметричны относительно прямой l1, далее — через прямую l2 и т.д. Докажите, что если через 2n прыжков блоха оказалась в точке М, то, начиная движение из любой точки плоскости, через 2n прыжков блоха окажется на прежнем месте.
Даны окружность, две точки P и Q этой окружности и прямая. Найдите на окружности такую точку M, чтобы прямые MP и MQ отсекали на данной прямой отрезок AB данной величины.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 1026] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |