Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 492]
Из точки A на биссектрисе угла с вершиной L опущены перпендикуляры AK и AM на стороны угла. На отрезке KM взята точка P (K лежит между Q и L), а прямую ML – в точке S. Известно, что ∠KLM = α, KM = a, QS = b. Найдите KQ.
|
|
Сложность: 3+ Классы: 9,10
|
Точки A, B и C лежат на одной прямой, причём B находится между A и C.
Найдите геометрическое место таких точек M, что радиусы описанных окружностей треугольников AMB и CMB равны.
В треугольнике ABC ∠A = 60°. Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.
В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?
Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 492]