ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 492]
Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.
Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.
Внутри треугольника ABC взята такая точка O, что ∠ABO = ∠CAO, ∠BAO = ∠BCO, ∠BOC = 90°. Найдите отношение AC : OC.
С помощью циркуля и линейки постройте параллелограмм по его углу и диагоналям.
С помощью циркуля и линейки проведите через данную точку касательную к данной окружности.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 492] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |