Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 298]
|
|
Сложность: 3+ Классы: 10,11
|
На прямоугольном листе бумаги отмечены
а) несколько точек на одной прямой;
б) три точки.
Разрешается сложить лист бумаги несколько раз по прямой так, чтобы отмеченные точки не попали на линии сгиба, и затем один раз шилом проколоть сложенный лист насквозь. Докажите, что это можно сделать так, чтобы дырки оказались в точности в отмеченных точках и лишних дырок не получилось.
|
|
Сложность: 3+ Классы: 7,8,9
|
На плоскости отмечены 100 точек, никакие три из которых не лежат на одной прямой. Саша разбивает точки на пары, после чего соединяет точки в каждой из пар отрезком. Всегда ли он может это сделать так, чтобы каждые два отрезка пересекались?
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости дано n точек, никакие три из которых
не лежат на одной прямой. Докажите, что их можно обозначить
A
1,A
2,...,A
n
в таком порядке, чтобы замкнутая ломаная
A
1A
2...A
n была
несамопересекающейся.
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.
Пример расположения прямых (без последней прямой) изображен на рисунке.
Пусть
A1,
B1,...,
F1 — середины сторон
AB,
BC,...,
FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников
A1C1E1 и
B1D1F1 совпадают.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 298]