Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 298]
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости даны несколько точек, никакие три из которых не лежат на одной прямой. Некоторые точки соединены отрезками. Известно, что любая прямая, не проходящая через данные точки, пересекает чётное число отрезков. Докажите, что из каждой точки выходит чётное число отрезков.
На окружности отмечено 20 точек. Сколько существует таких троек хорд с концами в этих точках, что каждая хорда пересекает две остальные (возможно, в концах)?
Можно ли расставить шесть фотографов на площади таким образом, чтобы каждый из них мог сфотографировать ровно четырёх других? (Фотографы А и В могут сфотографировать друг друга, если на отрезке АВ нет других фотографов.)
На плоскости нарисовали 10 равных отрезков и отметили все их точки пересечения. Оказалось, что каждая точка пересечения делит любой проходящий через неё отрезок в отношении 3 : 4. Каково наибольшее возможное число отмеченных точек?
Будем называть змейкой ломаную, у которой все углы между соседними звеньями равны, причём для любого некрайнего звена соседние с ним звенья лежат в разных полуплоскостях от этого звена (пример змейки см. на рисунке). Барон Мюнхгаузен заявил, что отметил на плоскости 6 точек и нашёл 6 разных способов соединить их (пятизвенной) змейкой (вершины каждой из змеек – отмеченные точки). Могут ли его слова быть правдой?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 298]