Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 298]
|
|
Сложность: 3+ Классы: 7,8,9
|
На плоскости дано множество из
n![](show_document.php?id=1636405)
9
точек. Для любых 9 его точек
можно выбрать две окружности так, что все эти точки окажутся на выбранных
окружностях. Докажите, что все
n точек лежат на двух окружностях.
|
|
Сложность: 4- Классы: 8,9,10
|
Пусть
ABCD — выпуклый четырехугольник,
K,
L,
M и
N —
середины сторон
AB,
BC,
CD и
DA. Докажите, что точка пересечения
отрезков
KM и
LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.
|
|
Сложность: 4- Классы: 7,8,9
|
На плоскости расположено
N точек. Отметим середины всевозможных отрезков с
концами в этих точках. Какое наименьшее число отмеченных точек может
получиться?
Какое наименьшее количество точек на плоскости надо взять, чтобы среди
попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
|
|
Сложность: 4- Классы: 8,9,10
|
k точек на плоскости расположены так, что любой треугольник с
вершинами в этих точках имеет площадь не больше 1. Доказать, что
все эти точки можно поместить в треугольник площади 4.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 298]