ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 139]      



Задача 116070

Темы:   [ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
Сложность: 4
Классы: 8,9

На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL.

Прислать комментарий     Решение

Задача 65645

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4+
Классы: 8,9,10

Точки IA, IB, IC – центры вневписанных окружностей треугольника ABC, касающихся сторон BC, AC и AB соответственно. Перпендикуляр, опущенный из IA на AC, пересекает перпендикуляр, опущенный из IB на BC, в точке XC. Аналогично определяются точки XA и XB. Докажите, что прямые IAXA, IBXB и ICXC пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109795

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Гомотетия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4+
Классы: 9,10,11

Пусть IA и IB – центры вневписанных окружностей, касающихся сторон BC и CA треугольника ABC соответственно, а P – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных окружностей треугольников IACP и IBCP, совпадает с центром окружности Ω.
Прислать комментарий     Решение


Задача 115782

Темы:   [ Вневписанные окружности ]
[ Неравенства с площадями ]
[ Вписанные и описанные окружности ]
[ Экстремальные свойства (прочее) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 8,9,10,11

В угол A, равный α, вписана окружность, касающаяся его сторон в точках B и C. Прямая, касающаяся окружности в некоторой точке M, пересекает отрезки AB и AC в точках Р и Q соответственно. При каких α может быть выполнено неравенство SPAQ < SBMC?

Прислать комментарий     Решение

Задача 111718

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
[ Теоремы Чевы и Менелая ]
Сложность: 4+
Классы: 9,10

Дан треугольник ABC . Вневписанная окружность касается его стороны BC в точке A1 и продолжений двух других сторон. Другая вневписанная окружность касается стороны AC в точке B1 . Отрезки AA1 и BB1 пересекаются в точке N . На луче AA1 отметили точку P , такую что AP=NA1 . Докажите, что точка P лежит на вписанной в треугольник окружности.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 139]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .