Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 139]
Докажите, что катет прямоугольного треугольника равен сумме
радиуса вписанной окружности и радиуса вневписанной окружности,
касающейся этого катета.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан треугольник $ABC$. Пусть $I$ – центр вневписанной окружности, касающейся стороны $AB$, а $A_1$ и $B_1$ – точки касания двух других вневписанных окружностей со сторонами $BC$ и $AC$ соответственно. Пусть $M$ – середина отрезка $IC$, а отрезки $AA_1$ и $BB_1$ пересекаются в точке $N$. Докажите, что точки $N$, $B_1$, $A$ и $M$ лежат на одной окружности.
|
|
Сложность: 4 Классы: 8,9,10
|
Вершины треугольника $DEF$ лежат на разных сторонах треугольника $ABC$. Касательные, проведенные из центра вписанной в треугольник $DEF$ окружности к вневписанным окружностям треугольника $ABC$, равны. Докажите, что $4S_{DEF} \ge S_{ABC}$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В треугольнике $ABC$ $I$ – центр вписанной окружности, вневписанная окружность с центром $I_A$ касается стороны $BC$ в точке $A'$. Через $I$ проведена прямая $l\perp BI$. Оказалось, что $l$ пересекает $I_AA'$ в точке $K$, лежащей на средней линии, параллельной $BC$. Докажите, что $\angle B\leq 60^{\circ}$.
Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются
в точке X. Докажите, что CX – биссектриса угла ACN.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 139]