ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 222]      



Задача 111718

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Гомотетия помогает решить задачу ]
[ Теоремы Чевы и Менелая ]
Сложность: 4+
Классы: 9,10

Дан треугольник ABC . Вневписанная окружность касается его стороны BC в точке A1 и продолжений двух других сторон. Другая вневписанная окружность касается стороны AC в точке B1 . Отрезки AA1 и BB1 пересекаются в точке N . На луче AA1 отметили точку P , такую что AP=NA1 . Докажите, что точка P лежит на вписанной в треугольник окружности.
Прислать комментарий     Решение


Задача 65803

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Гомотетия помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC  O, M, N – центр описанной окружности, центр тяжести и точка Нагеля соответственно.
Докажите, что угол MON прямой тогда и только тогда, когда один из углов треугольника равен 60°.
Прислать комментарий     Решение


Задача 66313

Темы:   [ Вневписанные окружности ]
[ Вписанные и описанные окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Применение проективных преобразований прямой в задачах на доказательство ]
Сложность: 5-
Классы: 9,10,11

Пусть AK и BL – высоты остроугольного треугольника ABC, а Ω – вневписанная окружность ABC, касающаяся стороны AB. Общие внутренние касательные к описанной окружности ω треугольника CKL и окружности Ω пересекают прямую AB в точках P и Q. Докажите, что  AP = BQ.

Прислать комментарий     Решение

Задача 66932

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5-
Классы: 9,10,11

Автор: Дидин М.

К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
Прислать комментарий     Решение


Задача 66954

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Теорема Птолемея ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 222]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .