Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 222]
|
|
Сложность: 4+ Классы: 9,10,11
|
Дан неравнобедренный треугольник ABC, AA1 – его биссектриса, A2 – точка касания вписанной окружности со стороной BC. Аналогично определяются точки B1, B2, C1, C2. Пусть O – центр описанной окружности треугольника, I – центр вписанной окружности. Докажите, что радикальный центр описанных окружностей треугольников AA1A2, BB1B2, CC1C2, лежит на прямой OI.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Четырёхугольник $ABCD$ вписан в окружность. Лучи $BA$ и $CD$ пересекаются в точке $P$. Прямая, проходящая через $P$ и параллельная касательной к окружности в точке $D$, пересекает в точках $U$ и $V$ касательные, проведённые к окружности в точках $A$ и $B$. Докажите, что окружности, описанные около треугольника $CUV$ и четырёхугольника $ABCD$, касаются.
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть IA и IB – центры вневписанных окружностей, касающихся сторон BC и CA треугольника ABC соответственно, а P – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных
окружностей треугольников IACP и IBCP, совпадает с центром окружности Ω.
|
|
Сложность: 4+ Классы: 8,9,10
|
На сторонах AC и BC неравнобедренного треугольника ABC во внешнюю сторону построены как на основаниях равнобедренные треугольники AB'C и CA'B с одинаковыми углами при основаниях, равными φ. Перпендикуляр, проведённый из вершины C к отрезку A'B', пересекает серединный перпендикуляр к отрезку AB в точке C1. Найдите угол AC1B.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Восстановите вписанно-описанный четырёхугольник $ABCD$ по серединам дуг $AB$, $BC$, $CD$ его описанной окружности.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 222]