Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 102]
Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что SABCD ≤ EG·HF.
Диагонали AC и BD вписанного в окружность четырёхугольника
пересекаются в точке Q под прямым углом. Прямые AB и CD
пересекаются в точке P. Известно, что BC = 5, AD = 10, BQ = 3. Найдите AP.
Дан треугольник ABC. На стороне BC взята точка P, а на
стороне AC взята точка M, причём ∠APB = ∠BMA = 45°. Отрезки AP и BM пересекаются в точке O. Известно,что площади треугольников BOP и AOM равны между собой, BC = 1, BO = . Найдите площадь треугольника ABC.
На сторонах BC и CD квадрата ABCD взяты точки E и F, причём ∠EAF = 45°. Отрезки AE и AF пересекают диагональ BD в точках P и Q.
Докажите, что SAEF = 2SAPQ.
|
|
Сложность: 4- Классы: 9,10
|
Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 102]