ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 148]      



Задача 55685

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Симметрия помогает решить задачу ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

В выпуклом четырехугольнике ABCD вершины A и C противоположны. Сторона BC имеет длину, равную 4, величина угла ADC равна 60o, а величина угла BAD равна 90o. Найдите длину стороны CD, если площадь четырехугольника равна

(AB . CD + BC . AD)/2.

Прислать комментарий     Решение

Задача 115735

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Сторону AB треугольника ABC разделили на n равных частей (точки деления  B0 = A,  B1, B2,  Bn = B),  а сторону AC этого треугольника разделили на
n + 1  равных частей (точки деления  C0 = A,  C1, C2, ..., Cn+1 = C).  Закрасили треугольники CiBiCi+1. Какая часть площади треугольника закрашена?
Прислать комментарий     Решение


Задача 55244

Темы:   [ Неравенства с площадями ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

Каждая сторона выпуклого четырёхугольника меньше a. Докажите, что его площадь меньше a2.

Прислать комментарий     Решение


Задача 56772

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10

Каждая из сторон выпуклого четырехугольника разделена на пять равных частей и соответствующие точки противоположных сторон соединены (см. рис.). Докажите, что площадь среднего (заштрихованного) четырехугольника в 25 раз меньше площади исходного.


Прислать комментарий     Решение

Задача 56889

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 4
Классы: 8,9

На сторонах треугольника ABC внешним образом построены квадраты с центрами A1, B1 и C1. Пусть a1, b1 и c1 – длины сторон треугольника A1B1C1, S и S1 – площади треугольников ABC и A1B1C1. Докажите, что:
  а)  
  б)   S1S = 1/8 (a² + b² + c²).

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .