ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 148]      



Задача 55070

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Точка D лежит на стороне AB треугольника ABC, точки E и F — на стороне BC этого треугольника, а точка P — на стороне AC. Отрезок AD составляет две трети стороны AB, отрезок BF составляет три пятых стороны BC, отрезок BE составляет одну пятую стороны BC, а точка P делит сторону AC пополам. Найдите отношение площади четырёхугольника DEFP к площади треугольника ABC.

Прислать комментарий     Решение


Задача 55071

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

A, B, C, D — последовательные вершины параллелограмма. Точки E, F, P, H лежат соответственно на сторонах AB, BC, CD, AD. Отрезок AE составляет $ {\frac{1}{3}}$ стороны AB, отрезок BF составляет $ {\frac{1}{3}}$ стороны BC, а точки P и H делят пополам стороны, на которых они лежат. Найдите отношение площади четырёхугольника EFPH к площади параллелограмма ABCD.

Прислать комментарий     Решение


Задача 55072

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

A, B, C, D — последовательные вершины параллелограмма ( AD || BC). Точка E лежит на стороне AB, причём отрезок AE составляет $ {\frac{1}{6}}$ этой стороны. Точка F лежит на стороне BC, причём отрезок BF составляет $ {\frac{1}{4}}$ этой стороны. На стороне AD лежит точка P, причём отрезок AP составляет $ {\frac{2}{3}}$ этой стороны. Найдите отношение площади треугольника EFP к площади параллелограмма.

Прислать комментарий     Решение


Задача 55100

Темы:   [ Медиана делит площадь пополам ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что $ \overrightarrow{AB_{1}} $ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_{1}} $ = 2$ \overrightarrow{BC}$ и $ \overrightarrow{CA_{1}} $ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.

Прислать комментарий     Решение


Задача 64316

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7

Квадрат с вершинами в узлах сетки и сторонами длиной 2009, идущими по линиям сетки, разрезали по линиям сетки на несколько прямоугольников.
Докажите, что среди них есть хотя бы один прямоугольник, периметр которого делится на 4.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .