Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 316]
|
|
Сложность: 4 Классы: 9,10,11
|
Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а
подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите а) наименьшее такое число, б) все такие числа.
|
|
Сложность: 4 Классы: 8,9,10
|
В каждой вершине выпуклого 100-угольника написано по два различных числа.
Докажите, что можно вычеркнуть по одному числу в каждой вершине так,
чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
|
|
Сложность: 4 Классы: 8,9,10
|
На доске написано натуральное число. Если на доске написано число x, то можно дописать на нее число 2x + 1 или x/x+2. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.
|
|
Сложность: 4 Классы: 10,11
|
На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?
Изначально на доске записаны 10 последовательных натуральных чисел.
За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа a² – 2011b² и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 316]