ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 316]      



Задача 111349

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

Прислать комментарий     Решение

Задача 111846

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Вспомогательная раскраска (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Автор: Петров Ф.

В каждой вершине выпуклого 100-угольника написано по два различных числа. Докажите, что можно вычеркнуть по одному числу в каждой вершине так, чтобы оставшиеся числа в каждых двух соседних вершинах были различными.

Прислать комментарий     Решение

Задача 111883

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 4
Классы: 8,9,10

Автор: Храбров А.

На доске написано натуральное число. Если на доске написано число x, то можно дописать на нее число  2x + 1  или x/x+2. В какой-то момент выяснилось, что на доске присутствует число 2008. Докажите, что оно там было с самого начала.

Прислать комментарий     Решение

Задача 116415

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Векторы помогают решить задачу ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 10,11

На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?

Прислать комментарий     Решение

Задача 116761

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа  a² – 2011b²  и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .