ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 316]      



Задача 109600

Темы:   [ Процессы и операции ]
[ Арифметическая прогрессия ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Ню В.

На карусели с n сиденьями мальчик катался n сеансов подряд. После каждого сеанса он вставал и, двигаясь по часовой стрелке, пересаживался на другое сиденье. Число сидений карусели, мимо которых мальчик проходит при пересаживании, включая и то, на которое он садится, назовём длиной перехода. При каких n за n сеансов мальчик мог побывать на каждом сиденье, если длины всех n – 1  переходов различны и меньше n?

Прислать комментарий     Решение

Задача 110098

Темы:   [ Процессы и операции ]
[ Системы точек ]
[ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
Сложность: 4+
Классы: 8,9,10

На отрезке  [0, 2002]  отмечены его концы и  n – 1 > 0  целых точек так, что длины отрезков, на которые разбился отрезок  [0, 2002],  взаимно просты в совокупности. Разрешается разделить любой отрезок с отмеченными концами на n равных частей и отметить точки деления, если они все целые. (Точку можно отметить второй раз, при этом она остаётся отмеченной.) Можно ли, повторив несколько раз эту операцию, отметить все целые точки на отрезке?

Прислать комментарий     Решение

Задача 111332

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10

У игрока есть m золотых и n серебряных монет. В начале каждого раунда игрок ставит какие-то монеты на красное, какие-то на чёрное (можно вообще ничего не ставить на один из цветов, часть монет можно никуда не ставить). В конце каждого раунда крупье объявляет, что один из цветов выиграл. Ставку на выигравший цвет крупье отдаёт игроку, удваивая в ней количество монет каждого вида, а ставку на проигравший цвет забирает себе. Игрок хочет, чтобы монет одного вида у него стало ровно в три раза больше, чем другого (в частности, его устроит остаться совсем без денег). При каких m и n крупье не сможет ему помешать?

Прислать комментарий     Решение

Задача 115985

Темы:   [ Процессы и операции ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Поворот помогает решить задачу ]
Сложность: 4+
Классы: 8,9,10,11

На бесцветной плоскости покрасили три произвольные точки: одну – в красный цвет, другую – в синий, третью –` в жёлтый. Каждым ходом выбирают на плоскости любые две точки двух из этих цветов и окрашивают еще одну точку в оставшийся цвет так, чтобы эти три точки образовали равносторонний треугольник, в котором цвета вершин идут в порядке "красный, синий, жёлтый" (по часовой стрелке). При этом разрешается красить и уже окрашенную точку плоскости (считаем, что точка может иметь одновременно несколько цветов). Докажите, что сколько бы ходов ни было сделано, все точки одного цвета будут лежать на одной прямой.

Прислать комментарий     Решение

Задача 116007

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9,10

В школе решили провести турнир по настольному теннису между математическими и гуманитарными классами. Команда гуманитарных классов состоит из n человек, команда математических – из m, причём  nm.  Так как стол для игры всего один, было решено играть следующим образом. Сначала какие-то два ученика из разных команд начинают играть между собой, а все остальные участники выстраиваются в одну общую очередь. После каждой игры человек, стоящий в очереди первым, заменяет за столом члена своей команды, который становится в конец очереди. Докажите, что рано или поздно каждый математик сыграет с каждым гуманитарием.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .