Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 202]
|
|
Сложность: 3+ Классы: 8,9,10
|
Найдите все простые числа вида PP + 1 (P – натуральное), содержащие не более 19 цифр.
|
|
Сложность: 3+ Классы: 7,8,9
|
На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте
часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее
число концертов каждый из шести музыкантов сможет послушать (из зала) всех
остальных?
|
|
Сложность: 3+ Классы: 7,8,9
|
Обозначим через S(x) сумму цифр натурального числа x. Решить уравнения:
а) x + S(x) + S(S(x)) = 1993;
б) x + S(x) + S(S(x)) + S(S(S(x))) = 1993.
|
|
Сложность: 3+ Классы: 7,8,9
|
Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Сколько еще раз повторится такая ситуация в этом тысячелетии?
|
|
Сложность: 3+ Классы: 7,8,9
|
В вершинах кубика написали числа от 1 до 8, а на каждом ребре –
модуль разности чисел, стоящих в его концах.
Какое наименьшее количество различных чисел может быть написано на ребрах?
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 202]