Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 202]
|
|
Сложность: 3+ Классы: 9,10,11
|
Какие значения может принимать разность возрастающей
арифметической прогрессии a1, a2,...,
a5, все члены которой принадлежат отрезку [0; 3π/2], если числа
cos a1, cos a2, cos a3, а
также числа sin a3, sin a4 и sin
a5 в некотором порядке тоже образуют арифметические
прогрессии.
|
|
Сложность: 4- Классы: 6,7,8
|
На конкурсе "А ну-ка, чудища!" стоят в ряд 15 драконов. У соседей число голов отличается на 1. Если у дракона больше голов, чем у обоих его соседей, его считают хитрым, если меньше, чем у обоих соседей, – сильным, остальных (в том числе стоящих с краю) считают обычными. В ряду есть ровно четыре хитрых дракона – с 4, 6, 7 и 7 головами и ровно три сильных – с 3, 3 и 6 головами. У первого и последнего драконов голов поровну.
а) Приведите пример того, как такое могло быть.
б) Докажите, что число голов у первого дракона во всех
примерах одно и то же.
Имеется шахматная доска с обычной раскраской (границы квадратов считаются
окрашенными в чёрный цвет).
Начертить на ней окружность наибольшего радиуса, целиком лежащую на чёрном.
|
|
Сложность: 4- Классы: 8,9,10
|
Числовая последовательность {xn} такова, что для каждого n > 1 выполняется условие: xn+1 = |xn| – xn–1.
Докажите, что последовательность периодическая с периодом 9.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите все такие пары простых чисел p и q, что p³ – q5 = (p + q)².
Страница:
<< 34 35 36 37
38 39 40 >> [Всего задач: 202]