ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 202]      



Задача 109800

Темы:   [ Связность и разложение на связные компоненты ]
[ Принцип крайнего (прочее) ]
[ Перебор случаев ]
Сложность: 5-
Классы: 9,10,11

В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на  k + 2  группы так, что никакие два города из одной группы не соединены авиалинией.

Прислать комментарий     Решение

Задача 76550

Темы:   [ Наглядная геометрия в пространстве ]
[ Правильные многогранники ]
[ Перебор случаев ]
Сложность: 5+
Классы: 10,11

k проволочных треугольников расположены в пространстве так, что: 1) каждые 2 из них имеют ровно одну общую вершину, 2) в каждой вершине сходится одно и то же число p треугольников. Найдите все значения k и p, при которых указанное расположение возможно.
Прислать комментарий     Решение


Задача 76439

Темы:   [ Касательные к сферам ]
[ Касающиеся сферы ]
[ Перебор случаев ]
Сложность: 6+
Классы: 10,11

В пространстве расположены 3 плоскости и шар. Сколькими различными способами можно поместить в пространстве второй шар так, чтобы он касался трёх данных плоскостей и первого шара? (В этой задаче речь фактически идёт о касании сфер, т.е. не предполагается, что шары могут касаться только внешним образом — прим. ред.)
Прислать комментарий     Решение


Задача 76444

Темы:   [ Свойства сечений ]
[ Правильные многогранники (прочее) ]
[ Перебор случаев ]
Сложность: 6+
Классы: 10,11

В пространстве расположен правильный додекаэдр. Сколькими способами можно провести плоскость так, чтобы она высекла на додекаэдре правильный шестиугольник?
Прислать комментарий     Решение


Задача 111322

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 2+
Классы: 7,8

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 202]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .