ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 266]      



Задача 60749

Темы:   [ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

Прислать комментарий     Решение

Задача 61137

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

При каких n
  а) многочлен  x2n + xn + 1  делится на  x² + x + 1?
  б) многочлен  x2nxn + 1  делится на  x² – x + 1?

Прислать комментарий     Решение

Задача 61382

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Докажите неравенство для положительных значений переменных:  

Прислать комментарий     Решение

Задача 61384

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство   3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3)  при  a1a2a3b1b2b3.

Прислать комментарий     Решение

Задача 61386

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .