ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 266]      



Задача 79525

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите, что при простых  p > 7  число  p4 − 1  делится на 240.

Прислать комментарий     Решение

Задача 98252

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).

Прислать комментарий     Решение

Задача 98263

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Числовые неравенства. Сравнения чисел. ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 
Прислать комментарий     Решение

Задача 98558

Темы:   [ Десятичная система счисления ]
[ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Для натуральных чисел x и y число  x² + xy + y²  в десятичной записи оканчивается нулем. Докажите, что оно оканчивается хотя бы двумя нулями.

Прислать комментарий     Решение

Задача 105162

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Для положительных чисел x, y, z выполнено равенство  x²/y + y²/z + z²/x = x²/z + y²/x + z²/y.  Докажите, что хотя бы два из чисел x, y, z равны между собой.

Прислать комментарий     Решение

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .