ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 266]      



Задача 76450

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 3+
Классы: 9,10

Решить систему уравнений:
   3xyz – x³ – y³ – z³ = b³,
   x + y + z = 2b,
   x² + y² + z² = b².

Прислать комментарий     Решение

Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 30663

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 9,10

Решить в целых числах уравнение  3m + 7 = 2n.

Прислать комментарий     Решение

Задача 30669

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 6,7

Решите в натуральных числах уравнение  x² + y² = z².

Прислать комментарий     Решение

Задача 31251

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 6,7,8

Доказать, что  22n–1 + 3n + 4  делится на 9 при любом n.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .