ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 337]      



Задача 111209

Темы:   [ Площадь сечения ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

На сторонах AB и CD правильной четырёхугольной пирамиды SABCD ( S – вершина) взяты точки K и Z . Сечения пирамиды SABCD двумя взаимно перпендикулярными плоскостями α и β , проходящими через прямую KZ , – трапеции с равными основаниями. Грань SAD образует угол с пересекающей её плоскостью сечения, а угол между граниями SAD и ABCD равен arctg 3 . Найдите площади сечений пирамиды плоскостями α и β , если KZ=19 .
Прислать комментарий     Решение


Задача 111286

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AB = BC = 5, ∠ABC = 2 arcsin ⅗. Плоскость, перпендикулярная прямой AC, пересекает рёбра AC и AC₁ в точках D и E соответственно, причём AD = ⅓AC, EC₁ = ⅓AC₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111287

Темы:   [ Свойства сечений ]
[ Прямая призма ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCDABCD₁ ─ равнобедренная трапеция ABCD, в которой BC ∥ AD, BC = 1, AD = 5, ∠BAD = arctg ³⁄₂. Плоскость, перпендикулярная прямой AD, пересекает рёбра AD и AD₁ в точках E и F соответственно, причём AE = FD₁ = ⁵⁄₃. Найдите периметр сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111288

Темы:   [ Площадь сечения ]
[ Прямая призма ]
[ Площадь и ортогональная проекция ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCABC₁ ─ равнобедренный треугольник ABC, в котором AC = CB = 2, ∠ACB = 2 arcsin ⁴⁄₅. Плоскость, перпендикулярная прямой AB, пересекает рёбра AB и AB₁ в точках K и L соответственно, причём AK = ⁷⁄₁₆AB, LB₁ = ⁷⁄₁₆AB₁. Найдите площадь сечения призмы этой плоскостью.
Прислать комментарий     Решение


Задача 111289

Темы:   [ Свойства сечений ]
[ Прямая призма ]
Сложность: 4
Классы: 10,11

Основание прямой призмы ABCDABCD₁ ─ равнобедренная трапеция ABCD, в которой BC ∥ AD, BC = 5, AD = 10, ∠BAD = arctg 2. Плоскость, перпендикулярная прямой AD, пересекает рёбра AD и AD₁ в точках M и N соответственно, причём MD = AN = 1. Найдите периметр сечения призмы этой плоскостью.
Прислать комментарий     Решение


Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 337]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .