Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]
|
|
Сложность: 4 Классы: 10,11
|
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь
этого сечения меньше половины площади грани куба.
[Багаж в Московском метрополитене]
|
|
Сложность: 4 Классы: 10,11
|
Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?
|
|
Сложность: 4+ Классы: 10,11
|
Назовем многогранник хорошим, если его
объем (измеренный в
м3 ) численно равен площади его поверхности
(измеренной в
м2 ).
Можно ли какой-нибудь
хороший тетраэдр разместить внутри какого-нибудь хорошего
параллелепипеда?
|
|
Сложность: 5 Классы: 10,11
|
Внутри тетраэдра расположен треугольник, проекции которого на 4 грани
тетраэдра имеют площади
P1,
P2,
P3,
P4. Докажите, что а) в
правильном тетраэдре
P1 ≤
P2 +
P3 +
P4; б) если
S1,
S2,
S3,
S4
— площади соответствующих граней тетраэдра, то
P1S1 ≤
P2S2 +
P3S3 +
P4S4.
В равнобедренном треугольнике
ABC длина основания
AC равна
2
, длина боковой стороны равна 8. Точка
K делит высоту
BD
треугольника в отношении 2:3, считая от точки
B. Что больше:
длина
CK или длина
AC?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 56]