Страница:
<< 1 2 [Всего задач: 8]
|
|
Сложность: 5+ Классы: 10,11
|
Грани правильного октаэдра раскрашены в белый и черный цвет. При
этом любые две грани, имеющие общее ребро, покрашены в разные цвета.
Докажите, что для любой точки внутри октаэдра сумма расстояний до плоскостей
белых граней равна сумме расстояний до плоскостей черных граней.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли вписать октаэдр в куб так, чтобы вершины октаэдра находились на рёбрах куба?
|
|
Сложность: 4+ Классы: 10,11
|
Выпуклый многогранник с вершинами в серединах ребер некоторого куба называется
кубооктаэдром. В сечении кубооктаэдра плоскостью получился правильный многоугольник. Какое наибольшее число сторон он может иметь?
Страница:
<< 1 2 [Всего задач: 8]