ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 302]      



Задача 87254

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Основанием прямого параллелепипеда служит ромб. Плоскость, проведённая через одну из сторон нижнего основания и противоположную сторону верхнего основания, образует с плоскостью основания угол 45o . Полученное сечение имеет площадь Q . Найдите боковую поверхность параллелепипеда.
Прислать комментарий     Решение


Задача 87255

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Объем параллелепипеда ]
Сложность: 3
Классы: 8,9

В основании прямого параллелепипеда лежит параллелограмм со сторонами 1 и 4 и острым углом 60o . Большая диагональ параллелепипеда равна 5. Надите его объём.
Прислать комментарий     Решение


Задача 87259

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3
Классы: 8,9

Основание призмы – квадрат со стороной a . Одна из боковых граней – также квадрат, другая – ромб с углом 60o . Найдите полную поверхность призмы.
Прислать комментарий     Решение


Задача 87262

Темы:   [ Частные случаи параллелепипедов (прочее) ]
[ Площадь сечения ]
Сложность: 3
Классы: 8,9

Основание прямого параллелепипеда – ромб, площадь которого равна Q . Площади диагональных сечений равны S1 и S2 . Найдите объём параллелепипеда.
Прислать комментарий     Решение


Задача 87264

Темы:   [ Прямоугольные параллелепипеды ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 8,9

Стороны основания прямоугольного параллелепипеда равны a и b . Диагональ параллелепипеда наклонена к плоскости боковой грани, содержащей сторону основания, равную b , под углом 30o . Найдите объём параллелепипеда.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .