Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 147]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такое натуральное n, что
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена f(x) быть рациональным?
|
|
Сложность: 3+ Классы: 8,9,10
|
Существуют ли такие целые числа
a и
b, что
а) уравнение
x² +
ax + b = 0 не имеет корней, а уравнение [
x²] +
ax + b = 0 имеет?
б) уравнение
x² + 2
ax + b = 0 не имеет корней, а уравнение [
x²] + 2
ax + b = 0 имеет?
|
|
Сложность: 3+ Классы: 10,11
|
Решить уравнение x³ – [x] = 3.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 147]