Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 147]
|
|
Сложность: 3+ Классы: 8,9,10
|
Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
Перечислить все числа, обладающие этим свойством.
|
|
Сложность: 3+ Классы: 9,10,11
|
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?
|
|
Сложность: 3+ Классы: 8,9,10
|
В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
|
|
Сложность: 4- Классы: 10,11
|
Про непрерывную функцию
f известно, что:
- f определена на всей числовой прямой;
- f в каждой точке имеет производную (и, таким образом, график f в
каждой точке имеет единственную касательную);
- график функции f не содержит точек, у которых одна из координат
рациональна, а другая — иррациональна.
Следует ли отсюда, что график f — прямая?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 147]