Страница:
<< 25 26 27 28 29 30 31 [Всего задач: 153]
В маленьком зоопарке из клетки убежала обезьяна. Её ловят два сторожа. И
сторожа, и обезьяна бегают только по дорожкам. Всего в зоопарке шесть прямолинейных дорожек: три длинные образуют правильный треугольник, три короткие соединяют середины его сторон. В каждый момент времени обезьяна и сторожа видят друг друга. Смогут ли сторожа поймать обезьяну, если обезьяна бегает в 3 раза
быстрее сторожей? (Вначале оба сторожа находятся в одной вершине треугольника,
а обезьяна в другой.)
|
|
Сложность: 5 Классы: 8,9,10,11
|
Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома
со стороной, равной a. Расстояние между улицами – 3a, а расстояние между двумя соседними домами – 2a (см. рис.).
Одна улица патрулируется полицейскими, которые движутся на расстоянии 9a друг от друга со скоростью v. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?
|
|
Сложность: 5+ Классы: 8,9,10
|
Ширина реки один километр. Это по определению означает, что от любой точки
каждого берега можно доплыть до противоположного берега, проплыв не больше
километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до
любого из берегов было бы не больше:
а) 700 м?
б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)
Страница:
<< 25 26 27 28 29 30 31 [Всего задач: 153]