ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны  n > 1  приведённых квадратных трёхчленов  x² – a1x + b1,  ...,  x² – anx + bn,  причём все 2n чисел  a1, ..., an, b1, ..., bn  различны.
Может ли случиться, что каждое из чисел  a1, ..., an, b1, ..., bn  является корнем одного из этих трёхчленов?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 512]      



Задача 101892

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Трапеции (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 3+
Классы: 8,9

Четырёхугольник KLMN вписан в окружность. Точка P лежит на его стороне KL, причём  PM || KN  и  PN || LM.
Найдите длины отрезков KP и LP, если  MN = 6  и  KL = 13.

Прислать комментарий     Решение

Задача 102215

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Высота трапеции ABCD равна 5, а основания BC и AD соответственно равны 3 и 5. Точка E находится на стороне BC, причём  BE = 2,  F – середина стороны CD, а M – точка пересечения отрезков AE и BF. Найдите площадь четырёхугольника AMFD.

Прислать комментарий     Решение

Задача 102216

Темы:   [ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Высота трапеции ABCD равна 4, а основания BC и AD соответственно равны 5 и 7. Точка K находится на стороне AD, причём  AK = 3,  L – середина стороны AB, а M – точка пересечения отрезков CK и DL. Найдите площадь четырёхугольника BCML.

Прислать комментарий     Решение

Задача 102247

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

В треугольнике PQR точка T лежит на стороне PR,  ∠QTR = ∠PQRPT = 8,  TR = 1.
Найдите   а) сторону QR;   б) угол QRP, если радиус описанной окружности треугольника PQT равен 3.

Прислать комментарий     Решение

Задача 102248

Темы:   [ Вспомогательные подобные треугольники ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

В треугольнике KLM проведена медиана LN. Известно, что  ∠KLM = ∠LNMKM = 10.
Найдите  а) сторону LM;  б) ∠LMK, если расстояние от точки M до центра описанной окружности треугольника KLN равно 10.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .