Страница:
<< 41 42 43 44 45
46 47 >> [Всего задач: 232]
|
|
Сложность: 3+ Классы: 8,9,10
|
{an} – последовательность чисел между 0 и 1, в которой следом за x идёт 1 – |1 – 2x|.
а) Докажите, что если a1 рационально, то
последовательность, начиная с некоторого места, периодическая.
б) Докажите, что если последовательность, начиная с некоторого
места, периодическая, то a1 рационально.
|
|
Сложность: 3+ Классы: 8,9,10
|
Можно ли из последовательности 1, ½, ⅓, ... выбрать (сохраняя порядок)
а) сто чисел,
б) бесконечную подпоследовательность чисел,
из которых каждое, начиная с третьего, равно разности двух предыдущих (ak = ak–2 – ak–1)?
|
|
Сложность: 3+ Классы: 8,9,10
|
Найти все несократимые дроби а/b, представимые в виде b,а (запятая разделяет десятичные записи натуральных чисел b и а).
|
|
Сложность: 3+ Классы: 8,9,10
|
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Докажите, что последовательность, начиная с некоторого места, периодическая а) в том б) и только в том случае, когда x1 рационально.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.
Страница:
<< 41 42 43 44 45
46 47 >> [Всего задач: 232]