ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 177]      



Задача 109851

Темы:   [ Уравнения в целых числах ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10

Докажите, что найдутся четыре таких целых числа a, b, c, d, по модулю больших 1000000, что  1/a + 1/b + 1/c + 1/d = 1/abcd.

Прислать комментарий     Решение

Задача 110092

Темы:   [ Системы точек ]
[ Процессы и операции ]
[ НОД и НОК. Взаимная простота ]
[ Деление с остатком ]
Сложность: 4
Классы: 9,10,11

На отрезке  [0, N]  отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок  [0, N],  целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка  [0, N]?

Прислать комментарий     Решение

Задача 110131

Темы:   [ Взвешивания ]
[ Правило произведения ]
[ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.)

Прислать комментарий     Решение

Задача 110210

Темы:   [ Тригонометрические неравенства ]
[ Периодичность и непериодичность ]
Сложность: 4
Классы: 9,10,11

Докажите, что для каждого x такого, что sin x 0 , найдется такое натуральное n , что | sin nx| .
Прислать комментарий     Решение


Задача 110221

Тема:   [ Задачи на движение ]
Сложность: 4
Классы: 7,8,9

В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .