ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 177]      



Задача 116394

Темы:   [ Многоугольники (прочее) ]
[ Кривые второго порядка ]
[ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
[ Общие четырехугольники ]
[ Доказательство от противного ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 10,11

Существует ли выпуклый N-угольник, все стороны которого равны, а все вершины лежат на параболе  y = x²,  если
  а)  N = 2011;
  б)  N = 2012?

Прислать комментарий     Решение

Задача 116558

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Монотонность, ограниченность ]
Сложность: 4
Классы: 9,10

Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений  ax11 + bx4 + c = 0,  bx11 + cx4 + a = 0,  cx11 + ax4 + b = 0  имеют общий корень. Докажите, что все три уравнения имеют общий корень.

Прислать комментарий     Решение

Задача 116752

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Углы между прямыми и плоскостями ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 10,11

Внутри выпуклого многогранника выбрана точка P и несколько прямых  l1, ..., ln,  проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых  l1, ..., ln,  которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.

Прислать комментарий     Решение

Задача 116765

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
Сложность: 4
Классы: 10,11

Каждые два из действительных чисел a1, a2, a3, a4, a5 отличаются не менее чем на 1. Оказалось, что для некоторого действительного k выполнены равенства     Докажите, что  k² ≥ 25/3.

Прислать комментарий     Решение

Задача 64350

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные равные треугольники ]
[ Радикальная ось ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4+
Классы: 9,10

На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y. Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что  ∠ACS = ∠BCP.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .