Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 177]
|
|
Сложность: 4 Классы: 10,11
|
Существует ли выпуклый N-угольник, все стороны которого равны, а все вершины лежат на параболе y = x², если
а) N = 2011;
б) N = 2012?
Ненулевые числа a, b, c таковы, что каждые два из трёх уравнений ax11 + bx4 + c = 0, bx11 + cx4 + a = 0, cx11 + ax4 + b = 0 имеют общий корень. Докажите, что все три уравнения имеют общий корень.
|
|
Сложность: 4 Классы: 10,11
|
Внутри выпуклого многогранника выбрана точка P и несколько прямых l1, ..., ln, проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых l1, ..., ln, которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.
|
|
Сложность: 4 Классы: 10,11
|
Каждые два из действительных чисел a1, a2, a3, a4, a5 отличаются не менее чем на 1. Оказалось, что для некоторого действительного k выполнены равенства Докажите, что k² ≥ 25/3.
|
|
Сложность: 4+ Классы: 9,10
|
На сторонах остроугольного треугольника ABC вне него построены квадраты CAKL и CBMN. Прямая CN пересекает отрезок AK в точке X, а прямая CL пересекает отрезок BM в точке Y.
Точка P, лежащая внутри треугольника ABC, является точкой пересечения описанных окружностей треугольников KXN и LYM. Точка S – середина отрезка AB. Докажите, что ∠ACS = ∠BCP.
Страница:
<< 22 23 24 25
26 27 28 >> [Всего задач: 177]