Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 177]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
|
|
Сложность: 3+ Классы: 9,10,11
|
Изначально на доске записаны несколько натуральных чисел (больше одного). Затем каждую минуту на доску дописывается число, равное сумме квадратов всех уже записанных на ней чисел (так, если бы на доске изначально были записаны числа 1, 2, 2, то на первой минуте было бы дописано число 1² + 2² + 2²). Докажите, что сотое дописанное число имеет хотя бы 100 различных простых делителей.
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?
|
|
Сложность: 3+ Классы: 10,11
|
Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно.
Найдите все возможные значения суммы углов SDA, SEB и SFC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 177]