ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Токарев С.И.

Сергей Иванович Токарев - старший преподаватель Ивановского государственного энергетического университета, заведующий отделом задач в журнале "Математика в школе", член жюри Всероссийской олимпиады школьников по математике, создатель летнего турнира математических боёв им. А.П.Савина.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



Задача 103835

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Свойства разверток ]
Сложность: 3
Классы: 7

Из квадрата 5×5 вырезали центральную клетку. Разрежьте получившуюся фигуру на две части, в которые можно завернуть куб 2×2×2.
Прислать комментарий     Решение


Задача 103892

Темы:   [ Куб ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 7,8

Куб размером 3×3×3 состоит из 27 единичных кубиков. Можно ли побывать в каждом кубике по одному разу, двигаясь следующим образом: из кубика можно пройти в любой кубик, имеющий с ним общую грань, причём запрещено ходить два раза подряд в одном направлении?
Прислать комментарий     Решение


Задача 109489

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

На сторонах единичного квадрата отметили точки K, L, M и N так, что прямая KM параллельна двум сторонам квадрата, а прямая LN – двум другим сторонам квадрата. Отрезок KL отсекает от квадрата треугольник периметра 1. Треугольник какой площади отсекает от квадрата отрезок MN?

Прислать комментарий     Решение

Задача 65562

Тема:   [ Периодичность и непериодичность ]
Сложность: 3+
Классы: 10,11

Функции  f и g определены на всей числовой прямой и взаимно обратны. Известно, что  f представляется в виде суммы линейной и периодической функций:  f(x) = kx + h(x),  где k – число, h – периодическая функция. Доказать, что g также представляется в таком виде.

Прислать комментарий     Решение

Задача 65569

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10

На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .