Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 77]
|
|
Сложность: 4+ Классы: 10,11
|
Найдите все функции
f(
x)
, определенные при всех положительных
x , принимающие положительные
значения и удовлетворяющие при любых положительных
x и
y равенству
f(
xy)
=f(
x)
f(
y)
.
|
|
Сложность: 4+ Классы: 8,9,10
|
Можно ли в клетки таблицы 9×9 записать натуральные числа от 1 до 81 так, чтобы сумма чисел в каждом квадрате 3×3 была одна и та же?
|
|
Сложность: 4+ Классы: 8,9,10
|
Путь от платформы A до платформы B электропоезд прошел за X минут (0 < X < 60). Найдите X, если известно, что как в момент отправления от A, так и в момент прибытия в B угол между часовой и минутной стрелками равнялся X градусам.
|
|
Сложность: 4+ Классы: 7,8,9
|
Имеется 4 монеты, из которых 3 – настоящие, которые весят одинаково,
и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь
таковы, что если положить на их чашки равные грузы, то любая из чашек может
перевесить, если же грузы различны по массе, то обязательно перетягивает
чашка с более тяжелым грузом. Как за три взвешивания наверняка определить
фальшивую монету и установить, легче она или тяжелее остальных?
|
|
Сложность: 5- Классы: 8,9,10
|
Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 77]