Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 378]
Постройте треугольник по стороне, радиусу вписанной окружности и
радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)
|
|
Сложность: 4- Классы: 8,9,10
|
а) Даны две одинаковые шестерёнки с 14 зубьями каждая. Их наложили друг на друга так, что зубья совпали (так что проекция на плоскость выглядит как одна шестерёнка). После этого четыре пары совпадающих зубьев выпилили. Всегда ли можно повернуть эти шестерёнки друг относительно друга так, чтобы проекция на плоскость выглядела как одна целая шестерёнка? (Шестерёнки можно поворачивать, но нельзя переворачивать.)
б) Тот же вопрос про две шестерёнки с 13 зубьями, из которых выпилили по 4 зуба.
[Неравенство Птолемея]
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что для любых четырёх точек A, B, C, D, не лежащих в одной плоскости, выполнено неравенство AB·CD + AC·BD > AD·BC.
В шахматном турнире участвовали гроссмейстеры и мастера. По окончании турнира оказалось, что каждый участник набрал ровно половину своих очков в матчах с
мастерами. Докажите, что количество участников турнира является квадратом целого числа. (Каждый участник сыграл с каждым по одной партии, победа – 1
очко, ничья – ½ очка, поражение – 0 очков.)
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такой квадратный трёхчлен f(x) = ax² + bx + c с целыми коэффициентами и a, не кратным 2014, что все числа f(1), f(2), ..., f(2014) имеют различные остатки при делении на 2014?
Страница:
<< 58 59 60 61
62 63 64 >> [Всего задач: 378]