ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 378]      



Задача 116887

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Шестиугольники ]
[ Правильные многоугольники ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.

Прислать комментарий     Решение

Задача 116890

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
[ Четыре точки, лежащие на одной окружности ]
[ Замечательное свойство трапеции ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В треугольнике ABC:  ∠B = 22,5°,  ∠C = 45°.  Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116891

Темы:   [ Турниры и турнирные таблицы ]
[ Сочетания и размещения ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Автор: Фольклор

В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?

Прислать комментарий     Решение

Задача 116983

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 5,6,7

Автор: Фольклор

Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?

Прислать комментарий     Решение

Задача 116992

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Ромбы. Признаки и свойства ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .