Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 378]
|
|
Сложность: 4- Классы: 10,11
|
В кубе с ребром длины 1 провели два сечения в виде правильных шестиугольников.
Найдите длину отрезка, по которому эти сечения пересекаются.
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC: ∠B = 22,5°, ∠C = 45°. Докажите, что высота АН, медиана BM и биссектриса CL пересекаются в одной точке.
|
|
Сложность: 4- Классы: 10,11
|
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
|
|
Сложность: 4- Классы: 5,6,7
|
Последовательные натуральные числа 2 и 3 делятся на последовательные нечётные числа 1 и 3 соответственно; числа 8, 9 и 10 – делятся на 1, 3 и 5 соответственно. Найдутся ли 11 последовательных натуральных чисел, которые делятся на 1, 3, 5, 7, 9, 11, 13, 15, 17, 19 и 21 соответственно?
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 378]