ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Фольклор

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 378]      



Задача 116271

Темы:   [ Пятиугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.

Прислать комментарий     Решение

Задача 116440

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Вписанная окружность треугольника ABC касается его сторон ВС, АС и АВ в точках A', B' и C' соответственно. Точка K – проекция точки C' на прямую A'B'. Докажите, что KC' – биссектриса угла AKB.

Прислать комментарий     Решение

Задача 116455

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
[ Векторы помогают решить задачу ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

На сторонах АС и ВС равностороннего треугольника АВС отмечены точки D и Е соответственно так, что  AD = ⅓ AC,  CE = ⅓ CE.  Отрезки АЕ и BD пересекаются в точке F. Найдите угол BFC.

Прислать комментарий     Решение

Задача 116624

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

Прислать комментарий     Решение

Задача 116668

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 7,8

Автор: Фольклор

В каждой клетке таблицы 10×10 записано число. В каждой строке подчеркнули наибольшее число (или одно из наибольших, если их несколько), а в каждом столбце – наименьшее (или одно из наименьших). Оказалось, что все подчёркнутые числа подчёркнуты ровно два раза. Докажите, что все числа, записанные в таблице, между собой равны.

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 378]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .