Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 378]
На плоскости проведены n прямых, среди которых нет параллельных. Никакие три из них не пересекаются в одной точке. Докажите, что существует такая n-звенная несамопересекающаяся ломаная A0A1A2...An, что на каждой из n прямых лежит ровно по одному звену этой ломаной.
|
|
Сложность: 4 Классы: 9,10,11
|
Постройте такое подмножество круга, площадью в половину площади круга, что его образ при симметрии относительно любого диаметра пересекается с ним по площади, равной четверти круга.
Есть 13 золотых и 14 серебряных монет, из которых ровно одна фальшивая. Известно, что если фальшивая монета – золотая, то она легче настоящей, так как сделана из меньшего количества золота, а если фальшивая монета – серебряная, то она тяжелее настоящей, так как сделана из более дешевого
и тяжелого металла. Как найти фальшивую монету за три взвешивания на чашечных весах без гирь? (Настоящие золотые монеты весят одинаково и настоящие серебряные монеты весят одинаково.)
|
|
Сложность: 4 Классы: 10,11
|
У прямого кругового конуса длина образующей равна 5, а диаметр
равен 8.
Найдите наибольшую площадь треугольного сечения, которая может получиться при
пересечении конуса плоскостью.
|
|
Сложность: 4 Классы: 9,10,11
|
a1, a2, ..., a101 – такая перестановка чисел 2, 3, ..., 102, что ak делится на k при каждом k. Найти все такие перестановки.
Страница:
<< 67 68 69 70
71 72 73 >> [Всего задач: 378]