Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 378]
|
|
Сложность: 4 Классы: 8,9,10
|
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну
овцу?
На полосе бумаги написаны подряд 60 знаков: "×" и "0". Эту полоску разрезают на куски с симметричным расположением знаков. Например:
0, × ×, 0 × × × × 0, × 0 ×, ... .
а) Докажите, что существует такой способ разрезания, при котором кусков не больше 24.
б) Приведите пример такого расположения знаков, при котором меньше 15 кусков получить нельзя.
|
|
Сложность: 4 Классы: 7,8,9,10
|
Доказать, что из 17 различных натуральных чисел либо найдутся пять таких
чисел a, b, c, d, e, что каждое из чисел этой пятёрки, кроме последнего,
делится на число, стоящее за ним, либо найдутся пять таких чисел, что ни одно
из них не делится на другое.
|
|
Сложность: 4 Классы: 7,8,9
|
В правильном десятиугольнике проведены все диагонали. Возле каждой вершины
и возле каждой точки пересечения диагоналей поставлено число +1 (рассматриваются
только сами диагонали, а не их продолжения). Разрешается одновременно изменить
все знаки у чисел, стоящих на одной стороне или на одной диагонали. Можно ли с помощью нескольких таких операций изменить все знаки на противоположные?
|
|
Сложность: 4 Классы: 8,9,10
|
В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок
состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 378]