ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Ясиновый Э.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 53893

Тема:   [ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

Через точку, взятую внутри произвольного треугольника, параллельно его сторонам проведены отрезки с концами на сторонах треугольника.
Докажите, что сумма трёх отношений этих отрезков к параллельным им сторонам треугольника равна 2.

Прислать комментарий     Решение

Задача 73638

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Замена переменных ]
[ Методы решения задач с параметром ]
Сложность: 4-
Классы: 9,10,11

Исследуйте, сколько решений имеет система уравнений
    x² + y² + xy = a,
    x² – y² = b,
где а и b – некоторые данные действительные числа.

Прислать комментарий     Решение

Задача 73804

 [Числа Стирлинга]
Темы:   [ Рекуррентные соотношения (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 5
Классы: 8,9,10,11

Обозначим через Tk(n) сумму произведений по k чисел от 1 до n. Например,    T2(4) = 1·2 + 1·3 + 1·4 + 2·3 + 2·4 + 3·4.
   а) Найдите формулы для T2(n) и T3(n).
   б) Докажите, что Tk(n) является многочленом от n степени 2k.
   в) Укажите метод нахождения многочленов Tk(n) при  k = 2, 3, 4, ...  и примените его для отыскания многочленов T4(n) и T5(n).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .