Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]
|
|
Сложность: 5+ Классы: 8,9,10
|
Треугольник
T содержится внутри выпуклого центрально-симметричного
многоугольника
M .
Треугольник
T' получается из треугольника
T
центральной симметрией относительно некоторой точки
P , лежащей внутри треугольника
T .
Докажите, что хотя бы одна из вершин треугольника
T' лежит
внутри или на границе многоугольника
M .
|
|
Сложность: 6 Классы: 10,11
|
На плоскости дано конечное множество точек
X и
правильный треугольник
T . Известно, что любое подмножество
X'
множества
X , состоящее из не более
9
точек, можно покрыть
двумя параллельными переносами треугольника
T . Докажите, что
все множество
X можно покрыть двумя параллельными переносами
T .
|
|
Сложность: 6+ Классы: 9,10,11
|
На плоскости даны два таких конечных набора
P1 и
P2 выпуклых многоугольников,
что любые два многоугольника из разных наборов имеют общую точку и в
каждом из двух наборов
P1 и
P2 есть пара непересекающихся
многоугольников. Докажите, что существует прямая, пересекающая все
многоугольники обоих наборов.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]